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Abstract
This paper presents a constructive proof of complete kinematic state
controllability of finite-dimensional open quantum systems whose dynamics
are represented by Kraus maps. For any pair of states (pure or mixed) on the
Hilbert space of the system, we explicitly show how to construct a Kraus map
that transforms one state into another. Moreover, we prove by construction
the existence of a Kraus map that transforms all initial states into a predefined
target state (such a process may be used, for example, in quantum information
dilution). Thus, in sharp contrast to unitary control, Kraus-map dynamics
allows for the design of controls which are robust to variations in the initial
state of the system. The capabilities of non-unitary control for population
transfer between pure states illustrated for an example of a two-level system by
constructing a family of non-unitary Kraus maps to transform one pure state into
another. The problem of dynamic state controllability of open quantum systems
(i.e., controllability of state-to-state transformations, given a set of available
dynamical resources such as coherent controls, incoherent interactions with the
environment, and measurements) is also discussed.

PACS numbers: 03.65.Yz, 02.30.Yy

1. Introduction

Coherent control of quantum systems is a rapidly developing area of research with applications
to numerous physical and chemical problems [1–5]. The general goal of quantum control is
to manipulate the dynamics of a quantum system in a desired way by applying suitable
external control fields, typically, optimally shaped pulses of a coherent radiation field. Much
theoretical work [6–8] has been devoted to coherent control of closed quantum systems with
unitary dynamics. However, realistic physical situations entail control of open quantum
systems whose dynamics is non-unitary due to interactions with the environment. Research
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on various aspects of control of open quantum systems has appeared in recent years [9–20],
motivated by many applications including quantum computing [21–24], laser cooling [25–28],
quantum reservoir engineering [29], management of decoherence [30–40], chemical reactions
and energy transfer in molecules [41–45].

A coherent control field acts on the system through the Hamiltonian part of its dynamics.
A qualitatively different approach relies on using specially tailored environments, which affect
the system via non-unitary evolution, with controls applied through the dissipative part of the
dynamics [46]. In this approach, a suitably optimized non-equilibrium distribution function
of an environment (e.g., an electron, atom, or molecular gas, or a solvent) is employed as
a control instrument to achieve the desired objective. This type of incoherent control by
the environment (ICE) may be combined with optimally tailored coherent fields to allow
for simultaneous control through both the Hamiltonian and dissipative parts of the system
dynamics.

One of the fundamental issues of quantum control assesses the system’s controllability.
A quantum system is controllable in a set of configurations, S = {λ}, if for any pair of
configurations λ1, λ2 ∈ S there exists a time-dependent control, c(t), that can drive the system
from the initial configuration λ1 to the final configuration λ2 in a finite time T. Here, the
notion of configuration means either the state of the system ρ, the expectation value of an
observable Tr(ρO), the evolution operator U(t), or the Kraus map �, depending on the
specific control problem. Controllability of closed quantum systems with unitary dynamics
has been extensively studied [47–58]. We will briefly review some of these relevant results in
section 2.

Unitary dynamics can achieve control only within sets of states exhibiting the same
density-matrix spectrum, and a unitary transformation cannot connect two quantum states of
different purity. Non-unitary evolution of open quantum systems is able to lift this restriction
and transform pure states into mixed ones and vice versa (a familiar example is the cooling
of a thermalized quantum system, which requires coupling to a reservoir). However, the
important question of controllability of open quantum systems is not yet fully addressed,
although some aspects of this problem have been considered. In particular, controllability of
a quantum system undergoing non-unitary evolution and controlled by a coherent field, which
acts only through the Hamiltonian part of the dynamics, has been discussed in a number of
works [11–13]. Another related research direction concerns supplementing unitary coherent
controls by measurements [10, 15–17, 19, 20].

In this paper, we take a different perspective by considering the problem of kinematic
state controllability (KSC) of open quantum systems whose dynamics are represented by
Kraus maps [59, 60]. Specifically, we prove the existence of a Kraus map that can move a
finite-dimensional open quantum system from any initial state ρin to any final target state ρf .
This establishes complete KSC of finite-dimensional open quantum systems with Kraus-map
dynamics, in contrast to restricted KSC of closed quantum systems where unitary dynamics
can connect only states with the same density-matrix spectrum.

The constructed Kraus map transforms all initial states into a predefined final target
state ρf . Such Kraus transformations can be used, for example, in the context of quantum
information dilution [61, 62] to realize a mapping of an unknown (mixed or pure) quantum
state into a given target state. The existence of such all-to-one maps is a significant distinction
between non-unitary evolution and unitary evolution, since in the latter case the evolution
operator and the corresponding coherent control field always depend on both the initial and
target states of the system. Therefore, extending the controls to include appropriate non-
unitary dynamics allows for solving the problem of achieving control operations which are
robust to variations in the initial state of the system. Robustness to variations in the initial state
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is understood here as the ability to use a single control (i.e., a single Kraus map) to transfer
all initial states into a predefined, mixed or pure, final target state. The possibility of using a
single Kraus map to transform all initial states into a given final state is a property stronger
than transitivity of the set of Kraus maps on the set of density matrices in a finite-dimensional
Hilbert space. This property does not have an analogue for unitary transformations. While
the set of unitary operators acts transitively on the set of unit-norm vectors, no single unitary
transformation can map all pure states into a given final pure state.

In practice, the unitary or non-unitary dynamics of the system is guided by a set of
available controls. Possible controls include pulses of coherent electromagnetic radiation,
incoherent environments (e.g., electron, atom, or molecular gases, or a solvent) with tunable
non-equilibrium distribution functions, disturbances induced by quantum measurements, etc.
The ability to make transformations between the states of the system, using the available set
of controls, is referred to as dynamic state controllability (DSC). For a specific problem, DSC
is determined by the particular dependence of the Kraus operators on the controls. In this
paper, we discuss some general properties of DSC which do not require knowledge of this
dependence.

Several important problems still remain open, including a study of DSC for specific
quantum systems, taking into account the available laboratory control tools, and an analysis
of robustness of the dynamical control to imperfections and environmental couplings during
the evolution. Some attempts in this direction exist, including, for example, an analysis of
coherent control of non-dispersive wave packets [63], although the problem remains generally
open for a future study. However, first it would be desirable to lay the ground for these system-
dependent studies by performing a general analysis of KSC and DSC, which can reveal the
highest degree of control attained by general physically allowable dynamics. The existence of
quantum controls which are robust to variations in the initial states, established in the present
work, should facilitate an exploration of non-unitary control tools for specific systems.

Experimental studies of environmentally-induced decoherence in open quantum systems
explored various physical processes, including the loss of spatial coherence of an atomic
wavefunction due to spontaneous emission [64], decoherence of motional superposition states
of a trapped atom coupled to engineered reservoirs [65], the loss of spatial coherence in matter-
wave interferometry with fullerenes caused by collisions with an environmental gas [66] or by
thermal emission of radiation [67], and decoherence in networks of spin qubits due to pairwise
dipolar interactions between the spins [68]. Control of decoherence was experimentally
explored in several systems, including photon pairs generated from atomic ensembles [38],
nuclear spin qubits in fullerenes [39] and vibrational wave-packets in diatomic molecules [40].
Suppression of decoherence for quantum computing using environment induced quantum
Zeno effect was suggested [69]. Control of decoherence of motional quantum states caused
by scattering events was proposed in [70]. The feasibility of decoherence suppression via
manipulations of quantum states is evidently related to a more general problem of state
controllability. For example, the controllability analysis can be applied to examine the
feasibility of transforming an arbitrary initial state into a state in a weak-decoherence subspace.
Considering the rapidly growing interest in experimental management of decoherence
[38–40], our theoretical analysis hopefully will stimulate further laboratory studies of practical
aspects of state controllability in open quantum systems.

The paper is organized as follows. In section 2, we formulate definitions of controllability
for closed and open quantum systems. The general proof of open-system KSC is presented in
section 3. The capabilities of non-unitary control for population transfer between pure states
are illustrated in section 4 for two-level quantum systems. In section 5, we also discuss general
conditions for DSC of open quantum systems undergoing Kraus-map evolution.
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2. Formulation of the controllability analysis

2.1. Definitions of controllability for closed quantum systems

A discussion of different notions of controllability in finite-dimensional closed quantum
systems with unitary dynamics is available [54, 55]. Here, we briefly review some basic
definitions and results as background for consideration of the open-system controllability
analysis to follow.

For unitary dynamics, KSC is defined as follows:

Definition 1. A closed quantum system with unitary dynamics is kinematically controllable in
a set SK of states if for any pair of states ρ1 ∈ SK and ρ2 ∈ SK there exists a unitary operator
U, such that ρ2 = Uρ1U

†.

Any two quantum states that belong to the same kinematically controllable set SK are called
kinematically equivalent. It is straightforward to see [54] that two states ρ1 and ρ2 of a closed
quantum system are kinematically equivalent if and only if they have the same eigenvalues.
Therefore, all quantum states that belong to the same kinematically controllable set have the
same density-matrix eigenvalues, the same von Neumann entropy and the same purity. For
example, all pure states belong to the same kinematically controllable set. However, any pure
state is not kinematically equivalent to any mixed state. For a closed quantum system all states
on the system’s Hilbert space are separated into unconnected sets of kinematically equivalent
states.

The dynamics of a closed quantum system is governed by the Schrödinger equation:

ih̄
dU(t)

dt
= HU(t), U(0) = I. (1)

Here, H is the Hamiltonian, U(t) is the evolution operator and I is the identity operator.
Assuming that the Hamiltonian H is a functional of a set of time-dependent controls
H = H [c1(t), . . . , ck(t)], DSC for unitary evolution is defined as follows:

Definition 2. A closed quantum system with unitary evolution is dynamically controllable in
a set SD of states if for any pair of states ρ1 ∈ SD and ρ2 ∈ SD there exist a finite time T and a
set of controls {c1(t), . . . , ck(t)}, such that the solution U(T ) of the Schrödinger equation (1)
transforms ρ1 into ρ2: ρ2 = U(T )ρ1U

†(T ).

Since unitary dynamics can be controlled only within the set of kinematically equivalent
states, a dynamically controllable set of states SD is always a subset of the corresponding
kinematically controllable set SK. If the dynamically controllable set of pure states coincides
with its kinematically controllable counterpart (i.e., the set of all pure states), the closed
quantum system is called pure-state controllable. If all dynamically controllable sets of states
coincide with their kinematically controllable counterparts, the system is called density-matrix
controllable.

It is possible to define controllability of a closed quantum system not only in a set of
states, but also in a set of evolution operators U(t). The corresponding property, called
evolution-operator controllability (EOC), is defined as follows:

Definition 3. A closed quantum system with unitary dynamics is evolution-operator
controllable if for any unitary operator V there exists a finite time T and a set of controls
{c1(t), . . . , ck(t)}, such that V = U(T ), where U(T ) is the solution of the Schrödinger
equation (1) with H = H [c1(t), . . . , ck(t)].
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For an N-level closed system, a necessary and sufficient condition for EOC is [54, 55] that the
dynamical Lie group G of the system be U(N) (or SU(N) for a traceless Hamiltonian, which
differs from the original one just by a physically irrelevant shift in the energy). It can be also
shown [54, 55] that EOC is equivalent to density-matrix controllability, while the condition
for pure-state controllability is weaker.

2.2. Definition of KSC for open quantum systems

The state of an open quantum system is represented by the reduced density matrix ρ =
TrE(ρtot), where ρtot is the density matrix of the system and environment taken together,
and TrE denotes the trace over the environment degrees of freedom. The dynamics of open
quantum systems is governed by various master equations (see, e.g., [71] on master equations
for a system weakly interacting with the environment and recent works on master equations
for collisional decoherence with a strong interaction [72–75]). If the system and environment
are initially uncorrelated, the time evolution of the system in the kinematic picture can be
described by a completely positive, trace-preserving linear map.

Let H be the Hilbert space of the system and T (H) be the space of trace-class operators
on H. For example, for an N-level quantum system, H = C

N is the space of complex vectors
of length N and T (H) = MN is the space of N × N complex matrices. The set of density
matrices (i.e., the set of positive operators on H with trace one) is denoted as D(H) (clearly,
D(H) ⊂ T (H)).

Definition 4. A linear map � : T (H) → T (H) is called completely positive if the map
� ⊗ Il : T (H) ⊗ Ml → T (H) ⊗ Ml (where Il is the identity map in Ml) is positive for any
l ∈ N. The map � is called trace preserving if for any ρ ∈ T (H), Tr(�[ρ]) = Tr(ρ).

Any completely positive, trace-preserving map has the Kraus operator-sum representation
[59, 60, 76]:

�[ρ] =
n∑

i=1

KiρK
†
i , (2)

where the Kraus operators Ki satisfy the condition
n∑

i=1

K
†
i Ki = I. (3)

Here, n ∈ N is the number of the Kraus operators Ki and I is the identity operator on H.
Condition (3) ensures the preservation of the trace: Tr(�[ρ]) = Tr(ρ). In this paper, we refer
to completely positive, trace-preserving maps simply as Kraus maps. Unitary transformations
of the system states form a particular subset of Kraus maps corresponding to n = 1. Note that
a composition of any two Kraus maps �1 and �2 is another Kraus map:

�2[�1[ρ]] ≡ (�2 ◦ �1)[ρ] = �3[ρ]. (4)

It is well known that any Kraus map � has infinitely many different Kraus operator-sum
representations of the form (2). Let {K1, . . . , Kn} be a set of Kraus operators representing �.
For m � n, consider an m × n matrix W with elements wij , such that W †W = In. Define a
new set of Kraus operators:

K̃i =
n∑

j=1

wijKj , i = 1, . . . , m. (5)
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Then for any ρ ∈ T (H), one has

m∑

i=1

K̃iρK̃
†
i =

n∑

i=1

KiρK
†
i , (6)

i.e., both sets of Kraus operators, {K1, . . . , Kn} and {K̃1, . . . , K̃m}, represent the same Kraus
map �. Moreover, if two different sets of Kraus operators represent the same Kraus map, then
they are necessarily related by (5) with a matrix W such that W †W = I . Any Kraus map for
an N-level quantum system can be represented by a set of n � N2 Kraus operators [76]. That
is, if the map is represented by a set of n > N2 Kraus operators, there always exists another
representation with not more than N2 operators.

In the context of the system coupled to the environment, complete positivity of a map �

means that for any admissible evolution of the system density matrix, �[ρ], the initial density
matrix ρtot(0) of the system and environment taken together will evolve into another density
matrix [22]. If the system and environment are initially correlated, the map describing the
evolution of the system density matrix will not be always completely positive and the Kraus
operator-sum representation (2) will not be always valid [77, 78].

The notions of closed-system controllability presented in section 2.1 need to be modified
for open quantum systems which allow non-unitary dynamics. For an open quantum system
with Kraus-map dynamics, KSC is defined as follows:

Definition 5. An open quantum system with the Kraus-map dynamics of the form (2) is
kinematically controllable in a set SK of states if for any pair of states ρ1 ∈ SK and ρ2 ∈ SK

there exists a Kraus map �, such that ρ2 = �[ρ1].

In the next section we will prove that KSC for a finite-dimensional open system with Kraus-map
dynamics is complete, i.e., that the system is kinematically controllable in the set SK = D(H)

of all density operators ρ on the Hilbert space H. The problem of DSC for the Kraus-map
evolution will be discussed in section 5.

3. Proof of complete KSC for open quantum systems with Kraus-map dynamics

The proof of complete KSC for open quantum systems with Kraus-map dynamics is given here
by construction. We start by reformulating the known result that Kraus maps can transform all
states of a finite-dimensional open quantum system into a given pure state. Then we prove that
open quantum systems with Kraus map dynamics are completely kinematically controllable.
Moreover, we prove by construction a stronger result—the existence of Kraus maps which
transform all states of an open quantum system into an arbitrary (not necessarily pure) target
state. We also construct Kraus maps which transform a given pure state into an arbitrary
(mixed or pure) target state.

It is known (see, for example, section 8.3.1 of [21]) that Kraus maps can transform mixed
states into pure ones. We now reformulate this result in a general way.

Theorem 1. For any pure state ρp = |ψ〉〈ψ | on the Hilbert space H of a finite-dimensional
open quantum system, there exists a Kraus map �atp, such that �atp[ρ] = ρp for all states ρ

on H1.

1 Abbreviation atp of all to pure is used to indicate that the Kraus map �atp transforms all states into a pure state.
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Proof. Define the operators K
(atp)

i = |ψ〉〈χi | for i = 1, . . . , N , where N is the dimension of

the system and {χi} is an arbitrary orthonormal basis in H. The operators K
(atp)

i satisfy the
normalization condition (3) and define the Kraus map

�atp[ρ] =
N∑

i=1

K
(atp)

i ρK
(atp)†
i . (7)

This map transforms all states into the pure state ρp since for any density matrix ρ

�atp[ρ] =
N∑

i=1

|ψ〉〈χi |ρ|χi〉〈ψ | = (Tr ρ)|ψ〉〈ψ | = ρp. (8)

This completes the proof. �

The choice of the orthonormal basis {χi} in the above proof is completely arbitrary.
Different bases {χi} determine different sets of Kraus operators

{
K

(atp)

i

}
which are related to

each other by (5) and all represent the same Kraus map �atp. The map �atp transforms all
initial states ρ into the same final state ρp, i.e., it is an all-to-one map.

Next, we generalize the result of theorem 1 to the case of an arbitrary (not necessarily
pure) target state.

Theorem 2. For any state ρf on the Hilbert space H of a finite-dimensional open quantum
system, there exists a Kraus map � such that �[ρ] = ρf for all states ρ on H.

Proof. Let the spectral decomposition of the final state ρf be

ρf =
N∑

i=1

pi |φi〉〈φi |, (9)

where pi is the probability to find the system in the state |φi〉 (pi � 0 and
∑N

i=1 pi = 1). In
particular, a pure state ρf = |φ〉〈φ| has only one non-zero eigenvalue, p1 = 1. For an arbitrary
orthonormal basis {χj } in H, define the operators

Kij = √
pi |φi〉〈χj |, i, j = 1, . . . , N. (10)

The operators Kij satisfy the normalization condition (3) and define the Kraus map:

�[ρ] =
N∑

i,j=1

KijρK
†
ij . (11)

The map � acts on any state ρ on H as

�[ρ] =
N∑

i,j=1

pi |φi〉〈χj |ρ|χj 〉〈φi | = (Tr ρ)

N∑

i=1

pi |φi〉〈φi | = ρf . (12)

This completes the proof. �

Complete KSC for open quantum systems with Kraus-map dynamics directly follows
from theorem 8 and can be expressed in the form of corollaries.

Corollary 1. For any pair of states ρ1 and ρ2 on the Hilbert space H of a finite-dimensional
open quantum system, there exists a Kraus map � such that �[ρ1] = ρ2.

Corollary 2. A finite-dimensional open quantum system with Kraus-map dynamics is
kinematically controllable in the set SK = D(H) of all density operators on H.
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Since the choice of the orthonormal basis {χj } is completely arbitrary, there exist infinitely
many sets of Kraus operators of the form (10) (corresponding to different choices of {χj }), all
of which represent the same Kraus map � of (11). The Kraus map � transforms all initial
states into the final target state ρf , i.e., it is an all-to-one map.

Given a pair of states ρin and ρf on the Hilbert space of a finite-dimensional open
quantum system, there exist many different Kraus maps transforming ρin into ρf . Consider,
for example, a pure initial state ρin = |ψ〉〈ψ | and an arbitrary (mixed or pure) final state
ρf = ∑N

i=1 pi |φi〉〈φi |. Let U = {Ui}Ni=1 be a set of unitary operators such that Ui |ψ〉 = |φi〉.
Define the operators

K
(pta)
i = √

piUi, i = 1, . . . , N, (13)

which satisfy the normalization condition (3) and determine the Kraus map2

�pta[ρ] =
N∑

i=1

K
(pta)
i ρK

(pta)†
i . (14)

The Kraus map �pta transforms the pure state ρin into the state ρf :

�pta[ρin] =
N∑

i=1

piUi |ψ〉〈ψ |U †
i =

N∑

i=1

pi |φi〉〈φi | = ρf . (15)

The choice of a set U = {Ui} of unitary operators with the property Ui |ψ〉 = |φi〉 is not
unique. Given any such a set U , the corresponding Kraus map �pta will be denoted as �

(U)
pta .

Different sets U = {Ui} and Ũ = {Ũi}, where Ui |ψ〉 = Ũi |ψ〉 = |φi〉, can produce different
Kraus maps �

(U)
pta and �

(Ũ)
pta , respectively. All these maps satisfy (15) when they act on the

particular state ρin = |ψ〉〈ψ |, but in general �
(U)
pta [ρ] 
= �

(Ũ)
pta [ρ] if ρ 
= ρin. Every �pta is a

one-to-one map, i.e., in general �pta[ρ] 
= �pta[ρ ′] if ρ 
= ρ ′.
For a given final state ρf of the form (9), we find that the Kraus operators Kij of (10) can

be constructed as

Kij = K
(pta)
i K

(atp)

j = √
piUi |ψ〉〈χj | = √

pi |φi〉〈χj |, (16)

for arbitrary choices of |ψ〉, {Ui} and {χj }. Therefore, the Kraus map � of (11), which
transforms all states into a given final state ρf , can be constructed as the composition of the
maps �atp and �pta,

� = �pta ◦ �atp. (17)

Indeed, using (8) and (15), we obtain

�[ρ] = �pta[�atp[ρ]] = �pta[|ψ〉〈ψ |] = ρf, (18)

for all states ρ on H.
Different constructions (equations (17) and (11), respectively) used for obtaining the same

Kraus map � indicate the possibility of steering the system to the target state via different
control pathways. The construction of (17) can be interpreted as a two-step process in which
the system is first driven to a specific pure state (which is not necessarily the ground state)
and subsequently transformed from this pure state into the target state (which can be either
pure or mixed). The construction of (11) describes a transformation to the target state with
no intermediate pure states involved. An example of such a process is the evolution of a
system coupled to a thermal reservoir kept at the inverse temperature β. In this case, under

2 Abbreviation pta of pure to any is used to indicate that the corresponding Kraus map transforms a specific pure
state into a given mixed or pure state.
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some general conditions on the system-environment interaction, all initial system states will
eventually evolve into the same thermal state ρ = e−βH0/Tr(e−βH0), where H0 is the free
system Hamiltonian. At that, a mixed initial state will always stay mixed during this type of
evolution.

4. Non-unitary transformations between pure states

In coherent control, transitions between pure states are achieved via unitary transformations.
Unitary dynamics correspond to keeping only one term in the Kraus operator-sum
representation (2). Here we show, using as an example a two-level open quantum system,
that a multitude of non-unitary Kraus maps can be used for transforming one pure state into
another.

Let the initial and final pure states be the ground |0〉 and excited |1〉 states of a two-level
system, with density matrices ρin = |0〉〈0| and ρf = |1〉〈1|, respectively. Define the two Kraus
operators:

K1 = x1|1〉〈0| + x2|0〉〈1|, K2 = x3|1〉〈0| + x4|0〉〈1|, (19)

where xi ∈ C, |x1|2 + |x3|2 = 1, and |x2|2 + |x4|2 = 1. The operators (19) satisfy the
normalization condition (3) and define the Kraus map

�ptp[ρin] =
2∑

i=1

KiρinK
†
i = ρf, (20)

which transforms the initial state ρin into the final state ρf
3.

If the Kraus operators K1 and K2 of (19) are linearly dependent, K1 = zK2 (z ∈ C), then
�ptp is a unitary map. However, if the Kraus operators K1 and K2 are linearly independent, the
corresponding Kraus map �ptp represents non-unitary evolution that steers a two-level open
quantum system between two pure states. In this case, the choice of the parameters xi in (19)
is arbitrary up to the conditions of normalization and linear independence, and therefore there
exist infinitely many pairs of Kraus operators {K1,K2} which define different Kraus maps
with the same property (20). Note also that Kraus maps �ptp of (20) are one-to-one maps
and differ from the all-to-one map � defined by (11). This emphasizes the existence not only
of a multitude of different operator-sum representations of the same map, but of qualitatively
different Kraus maps, all of which are capable of moving the open quantum system between
the same pair of states by non-unitary dynamics.

The influence of the environment on an open quantum system is typically viewed as
hindering unitary control pathways which would be otherwise effective for the closed system.
However, the possibility of transforming pure states into pure states via non-unitary dynamics
reveals a plethora of control pathways for open quantum systems. The existence of a multitude
of non-unitary control pathways implies flexibility and possibly control robustness in the sense
that if some transitions are blocked due to dynamical restrictions, other pathways may still
allow the controls to move the dynamics forward. The existence of non-unitary controls, which
nevertheless maintain coherence of the initial state, may be useful for quantum information
applications in which the loss of coherence is a serious impediment.

3 Abbreviation ptp of pure to pure is used to indicate that the corresponding Kraus map �ptp transforms a pure state
into a pure state.
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5. Conditions for dynamic state controllability of open quantum systems with
Kraus-map evolution

An important question yet to be fully resolved is DSC of open quantum systems. In order
to study the problem of DSC one needs to specify the dynamical capabilities, i.e., the set of
available controls. While for a closed quantum system with unitary dynamics all available
controls are coherent, the Kraus-map dynamics of an open system can be induced by both
coherent and incoherent controls (the former act only through the Hamiltonian part of the
dynamics, while the latter include interactions with other quantum systems and measurements).
Let C be a set of all available finite-time controls, which may include coherent electromagnetic
fields, tunable distribution functions of various environments, measurements, etc. Each
particular configuration of controls, c(t) ∈ C, induces the corresponding time evolution
of the system through the Kraus map �c,t that transforms an initial state ρ(0) into the state
ρ(t) = �c,t [ρ(0)] at time t. Based on these considerations, we introduce the following
definition of open-system DSC:

Definition 6. An open quantum system with Kraus-map evolution is dynamically controllable
in the set SD of states if for any pair of states ρ1 ∈ SD and ρ2 ∈ SD, there exists a configuration
of controls c(t) ∈ C and a finite time T, such that the resulting Kraus map �c,T transforms ρ1

into ρ2: ρ2 = �c,T [ρ1].

We can also generalize the definition of DSC by considering the asymptotic evolution, t → ∞;
the corresponding state is defined as ρ(∞) = limt→∞ �c,t [ρ(0)] (if the limit exists). The
system is asymptotically controllable if the case of t → ∞ is included in definition 6.

Complete DSC will be achieved under the Kraus-map dynamics if SD coincides with
SK = D(H), i.e., it includes all density operators ρ on the Hilbert space H of the system.
Similar to EOC of closed quantum systems, we can also define Kraus-map controllability
(KMC) of open systems:

Definition 7. An open quantum system with Kraus-map evolution is Kraus-map controllable
if the set C of all available controls generates all maps � of the form (2) from the identity
map I.

Definitions 6 and 7 allow us to formulate another corollary of theorem 8:

Corollary 3. KMC is sufficient for complete DSC of a finite-dimensional open quantum
system.

If any Kraus map can be generated by available controls, then, according to theorem 2 (or, more
specifically, corollary 1), any state-to-state transition can be enacted. In general, complete
DSC is weaker than KMC, since the former can be achieved even if the set of available controls
generates only a subset of all possible Kraus maps. For example, generating all Kraus maps of
the form (11) is sufficient for making possible all state-to-state transformations. These maps
form only a subset of all Kraus maps, but nevertheless the ability to generate all maps in this
subset using some set of controls implies complete DSC.

There can be various dynamical methods to engineer arbitrary finite-time Kraus-map
dynamics of open quantum systems. One method relies on the ability to coherently control
both the system and environment. Let the system under control be characterized by a Hilbert
space H1 of dimension N. An arbitrary Kraus map �[ρ] = ∑n

i=1 KiρK
†
i (where n can be

chosen such that n � N2) in the space of states D(H1) can be realized by coupling the system
to an ancilla (which serves as an effective environment), characterized by Hilbert space H2 of



Controllability of open quantum systems with Kraus-map dynamics 5691

dimension n, and generating a unitary evolution operator U acting in the Hilbert space of the
total system H = H1 ⊗ H2 as follows [22]. Choose in H2 a vector |0〉 and an orthonormal
basis |ei〉, i = 1, . . . , n. For any |ψ〉 ∈ H1 let U(|ψ〉 ⊗ |0〉) = ∑n

i=1 Ki |ψ〉 ⊗ |ei〉. Then,
such operator can be extended to a unitary operator in H and for any ρ ∈ D(H1) one has
�[ρ] = TrH2{U(ρ ⊗ |0〉〈0|)U †}. Therefore the ability to dynamically create, for example via
coherent control, an arbitrary unitary evolution of the system and ancilla allows for generating
arbitrary Kraus maps of the controlled system. In terms of controllability of finite-dimensional
systems, this means that EOC of the system and environment taken together is sufficient for
KMC and, according to corollary 3, for complete DSC of the system as well. Since in
practice one may not have full control over the environment, Lloyd and Viola [10] proposed
another method of Kraus-map engineering, based on a combination of coherent controls and
measurements. They have shown that the ability to perform a single simple measurement on
the system, together with the ability to apply coherent control to feed back the measurement
results, allows for enacting an arbitrary finite-time Kraus-map evolution of the form (2). This
procedure determines another set of controls that is sufficient for KMC and, according to
corollary 3, for complete DSC of a finite-dimensional open quantum system.

6. Conclusions

This paper establishes and illustrates complete KSC of finite-dimensional open quantum
systems with Kraus-map dynamics. The main theoretical result of the paper is that for any
target state ρf on the Hilbert space of the system, there exists a Kraus map that transforms
all initial states into ρf . The possibility of designing control operations which steer all initial
states of the system to a given target state is available due to the use of non-unitary dynamics
and is in principle unattainable in the framework of unitary control. Non-unitary controls also
allow for transformations between specific pure and mixed states and vice versa. Moreover,
there exist different Kraus maps which perform a desired state-to-state transition. For example,
the transition between a pair of pure states can be performed via three qualitatively different
families of Kraus maps: (i) unitary transformations, (ii) all-to-one non-unitary maps and
(iii) one-to-one non-unitary maps.

General definitions of DSC and KMC were introduced for finite-dimensional open
quantum systems, leading to the result that KMC is a sufficient condition for complete DSC.
Thus, if the available control tools make possible enacting any Kraus map, then any initial
state on the Hilbert space of the system can be transformed into any final state. Combining
this result with prior findings [10] on Kraus-map engineering determines two specific sets of
control operations (i.e., the two methods described in the last paragraph of section 5) which
are sufficient for the system to be dynamically controllable in the set of all states on the Hilbert
space. Moreover, any dynamical control which can produce a Kraus map of theorem 2 by
one of these approaches, will be robust to variations in the initial state. Important problems
for future research could be to establish the necessary conditions for dynamical controllability
of specific open quantum systems and to analyse robustness of the dynamical control to
imperfections and environmental effects during the evolution.
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